Boosting a Simple Weak Learner For Classifying Handwritten Digits

نویسندگان

  • Matthew P. Carter
  • Javed A. Aslam
چکیده

A weak PAC learner is one which takes labeled training examples and produces a classifier which can label test examples more accurately than random guessing. A strong learner (also known as a PAC learner), on the other hand, is one which takes labeled training examples and produces a classifier which can label test examples arbitrarily accurately. Schapire has constructively proved that a strong PAC learner can be derived from a weak PAC learner. A performance boosting algorithm takes a set of training examples and a weak PAC learning algorithm and generates a strong PAC learner. Our research attempts to solve the problem of learning a multi-valued function and then boosting the performance of this learner. We implemented the AdaBoost.M2 boosting algorithm. We developed a problem-general weak learning algorithm, capable of running under AdaBoost.M2, for learning a multi-valued function of uniform length bit sequences. We applied our learning algorithms to the problem of classifying handwritten digits. For training and testing data, we used the MNIST dataset. Our experiments demonstrate the underlying weak learner’s ability to achieve a fairly low error rate on the testing data, as well as the boosting algorithm’s ability to reduce the error rate of the weak learner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

Distribution-Specific Agnostic Boosting

We consider the problem of boosting the accuracy of weak learning algorithms in the agnostic learning framework of Haussler (1992) and Kearns et al. (1992). Known algorithms for this problem (BenDavid et al., 2001; Gavinsky, 2002; Kalai et al. , 2008) follow the same strategy as boosting algorithms in the PAC model: the weak learner is executed on the same target function but over different dis...

متن کامل

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

Relational Learning Using Constrained Confidence-Rated Boosting

In propositional learning, boosting has been a very popular technique for increasing the accuracy of classification learners. In firstorder learning, on the other hand, surprisingly little attention has been paid to boosting, perhaps due to the fact that simple forms of boosting lead to loss of comprehensibility and are too slow when used with standard ILP learners. In this paper, we show how b...

متن کامل

Handwritten Digit Recognition using Convolutional Neural Networks and Gabor filters

In this article, the task of classifying handwritten digits using a class of multilayer feedforward network called Convolutional Network is considered. A convolutional network has the advantage of extracting and using features information, improving the recognition of 2D shapes with a high degree of invariance to translation, scaling and other distortions. In this work, a novel type of convolut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998